

Seat No.

HAJ-003-1015001

B. Sc. (Sem. V) (CBCS) Examination May - 2023 Mathematics : Paper - M - 05 (A) (Mathematical Analysis - 1 & Abstract Algebra - 1) (New Course)

> Faculty Code : 003 Subject Code : 1015001

Time : $2\frac{1}{2}$ / Total Marks : 70

1	(A)	Answer the following questions in short :	
		(1) Define Neighborhood	
		(2) Give an example of a subset of metric space R which is not open and closed	
		(3) Define Interior point	
		(4) Define Dense Set	
	(B)	Attempt any one out of two :	2
		(1) Obtain border set of the subset (1, 3) of metric space <i>R</i> .	
		(2) Determine whether set $\{x \in \mathbb{R}/x^2 - 4x + 4 = 0\}$ is open or closed set.	
	(C)	Attempt any one out of two :	
		(1) State and prove principle of Housedorff's in metric space.	
		(2) Prove that the finite intersection of open sets of metric space is an open set.	

HAJ-003-1015001]

1

[Contd...

	(D)	Attempt any one out of two :				
		(1)	Prove that Closer Set of any subset of a metric space is a closed set.			
		(2)	Let (X, d) be a metric space and $a \in X$ then prove that $N(a, \delta)$ is an open set.			
2	(A)	Ans	wer the following questions in short :	4		
		(1)	Define Upper Riemann sum.			
		(2)	Define Finer partition.			
		(3)	Define Riemann Integration.			
		(4)	Define norm of a partition.			
	(B)	Atte	Attempt any one out of two :			
		(1)	If $f: [0, 1] \to R, f(x) = x$ and $P = \{0, 1/2, 1\}$ then find $U(P, f)$			
		(2)	Prove that every constant function is Riemann integrable			
	(C)	Atte	mpt any one out of two :	3		
		(1)	If $f(x) = [x], x \in [0, 3]$ then show that $f \in \mathbb{R}_{[0, 3]}$ and			
			find $\int_0^3 f(x) dx$, where [x] denote the greatest integer			
			not greater than x.			
		(2)	If f is continuous on $[a, b]$ then prove that f is Riemann Integral on $[a, b]$.			
	(D)	Atte	mpt any one out of two :	5		
		(1)	If f is monotonic on $[a, b]$ then prove that f is Riemann Integral on $[a, b]$.			
		(2)	State and prove necessary and sufficient condition for a bounded function f defined on $[a, b]$ to be <i>R</i> -integrable			
3	(A)	Ans	wer the following questions in short :	4		
		(1)	Define Integral function.			
		(2)	Define abelian group.			
		(3)	Define special linear group.			

(4) Define group.

HAJ-003-1015001]

[Contd...

- (B) Attempt any one out of two :
 - (1) Convert $\lim_{n \to \infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2 r^2}$ as definite integral.
 - (2) Prove that identity element in a group is unique.
- (C) Attempt any one out of two
 - (1) State and prove First mean value theorem of integral calculus.
 - (2) If (G,*) is a group then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$.
- (D) Attempt any one out of two :

(1) Prove that
$$\frac{\pi^3}{51} \le \int_0^{\pi} \frac{x^2}{10+7\cos x} dx \le \frac{\pi^3}{9}$$
.

- (2) Show that $(Z_n, +_n)$ is a group, where $n \in N$.
- 4 (A) Answer the following questions in short : 4
 - (1) Define symmetric group.
 - (2) Define cyclic subgroup.
 - (3) Define centre of a group.
 - (4) Define permutation.

(1) If
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$$
, $\sigma \in S_5$, then find σ^{-1} .

(2) Check that permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 5 & 6 \end{pmatrix}$ is

even or odd

- (C) Attempt any one out of two
 - (1) Let $H \leq G$ and $a, b \in G$ then prove that He = H and $a \in Ha$.
 - (2) If G is a group, then prove that o(a) / o(G); $\forall a \in G$.

3

HAJ-003-1015001]

3

5

2

3

- (D) Attempt any one out of two :
 - (1) State and prove Lagrange's theorem.
 - (2) Prove that the set A_n of all even permutations of

 $S_n (n \ge 2)$ is a subgroup of S_n of order $\frac{n!}{2}$.

- (1) Define Inner Automorphism
- (2) Define Normal subgroup
- (3) Define simple group.
- (4) Define Isomorphism
- (B) Attempt any one out of two :
 - (1) If a finite group G has only one subgroup H of given order, then prove H is a Normal subgroup of G.
 - (2) Let *G* be a group and let $H = \{a^2 / a \in G\} \le G$. Then show that *H* is a normal Subgroup of *G*.

(C) Attempt any one out of two :

- (1) Prove that a subgroup of index 2 in a group is a normal subgroup.
- (2) A subgroup H of a group G is a normal subgroup of

4

 $G \Leftrightarrow aHa^{-1} \subset H; \ \forall \alpha \in G.$

- (D) Attempt any one out of two :
 - (1) State and prove Cayle's theorem.
 - (2) Show that $(R_+, \bullet) \cong (R, +)$.

5

3

4

2